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The aim of the work is a mathematical modeling of the rock crushing during drilling and removal of the 

drilling cuttings (sludge) to the surface by drilling fluid. The process of rock destruction is described using the 
mathematical theory of fragmentation. The distribution of sludge particles in size and mass depends on such fac-
tors as the properties of the drilled rock, the rate of penetration, the type of bit, and the output power. After the 
formation of sludge, the process of its removal to the surface is modeled. The drilling fluid together with the rock 
particles is considered as a heterogeneous multiphase medium in which the carrier phase – the drilling fluid – is a 
non-Newtonian fluid. The flow of such a medium is described using a mixture model in the framework of the mul-
ti-fluid approach. This results in a system of nonlinear partial differential equations, for which a new closure rela-
tion is derived. To solve the system, the SIMPLE algorithm is used. As a result, the flow properties are studied 
with the inclusion of particles of various sizes. In particular, for particles of small size due to the action of plastic 
stresses in a non-Newtonian drilling fluid, an equilibrium mode arises in which the particles move with the drilling 
fluid without slipping. This is the fastest mode of delivery of sludge to the surface. The specific dimensions of 
such particles depend on the parameters of the drilling process. In particular, the appropriate size range can be ad-
justed by changing the parameters of the drilling fluid. 
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Introduction. One of the key technological processes in the drilling of wells is the circulation 

of drilling fluid. At the same time, we must solve the main practical task, which is the removal of 
particles of the drilled rock to the surface. When moving down the wellbore, the fluid loses its ini-
tial pressure, which in the end may turn out to be insufficient for the subsequent removal of the 
drilling cuttings. This can lead to jamming of the drill string and serious emergencies. The purpose 
of this work is a mathematical modeling of the formation of drilling cuttings and its removal to the 
surface with drilling fluid. This model will allow to calculate the various modes of drilling and pre-
dict the occurrence of complications. 

To simulate the rock crushing, the general theory of fragmentation is used [3, 5]. This math-
ematical theory describes the grinding of the initially existing set of objects, regardless of their 
physical nature. The examples of its specific application are various explosive processes, spray-
ing of fuel droplets, cell division, etc. Mathematical modeling of this process during drilling has 
not been previously considered. An additional difficulty here is to associate abstract mathemati-
cal concepts with specific tools used in the drilling process. The first part of this paper is de-
voted to this issue. 

The mixture of drilling fluid and particles resulting from crushing is a two-phase medium in 
which the carrier phase – the drilling fluid – is usually a non-Newtonian fluid. The flow of such a me-
dium is described by a set of nonlinear partial differential equations, which are usually solved by us-
ing simplifying assumptions, discarding part of the terms. Therefore, the issue of drilling cuttings re-
moval from the well is solved only at the assessment level (for example, [10]). In this case the cor-
rectness of the obtained results is difficult to estimate. In this paper, the complete set of equations is 
solved numerically without simplifying assumptions, which makes it possible to more reliably con-
sider the issue of drilling cuttings removal.  
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Rock crushing simulation. Conventionally, we divide all possible soils into three types: 
1) solid soil is the soil that is crushed during the drilling process; 2) sandy soil – its particles are 
not crushed; 3) mixed soil consists of a mixture of soils of the first and second type, which are 
considered separately. 

Of particular interest for further research and at the same time the most mathematical complex-
ity is the modeling of the redistribution of the masses of particles in the process of solid ground 
crushing. To describe the distribution of particles by mass (size), the natural approach would be the 
one based on the concept of a branching process [9]. In this approach, it is assumed that the parti-
cles are crushed independently from each other through some random intervals, and the evolution of 
the fragmentation process is determined only by the current state and does not depend on its history. 
Thus, the resulting branching process will have a Markov property. 

Mathematical model of crushing. Suppose that over a period [0, T] the rock with a mass M0 is 
crushed, after it is carried out with a solution of drilling fluid into the annular space of the well. Let 
at the moment of time t the masses of particles x be distributed in accordance with the law specified 
by the probability density function m(x, t). The fragmentation of particles occurs with an intensity 
λ(y), independent of time, but dependent on the particle mass y. In other words, on average, for each 
particle of mass y, fragmentation occurs after a time of 1/λ(y). In this case, a particle of mass y splits 
into several particles, the masses of which with respect to the mass of the particle being crushed are 
distributed in accordance with the law defined by the conditional probability density f (x|y). 

For the mass distribution density of particles m(x, t) the integro-differential equation (fragmen-
tation equation) holds [5]: 
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where m0(x) − particles mass distribution density at the initial time. 
Usually (for example, [4]) the power dependence of λ(x) on the mass x is used. In this study, 

the dependency was modified as follows: 
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to ensure that only particles of mass greater xmin are crushed. 
Often (see, for example, [8]) the power type of the conditional distribution density function is used. 
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It is assumed that with an increase in particle size by a certain amount, the sizes of particles 
formed during crushing will change in the same amount. Thus, m(x, t) will depend on a set of parame-
ters q = {xmin, λ0, β, γ}. 

Note that, having the function m(x, t), it is easy to restore the average radius of particles with 
radii in a given interval [r1, r2]: 
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Formula (3) allows us to obtain a piecewise constant approximation of the particle size distri-
bution. 

Estimation of model parameters. In the practical application of the described model, it is nec-
essary to set the numerical values of parameters q = {xmin, λ0, β, γ} for specific soils and bits. 
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Suppose that the particles are 
spherical, then xmin can be calculated as 
the mass of a particle of maximum ra-
dius r washed out of the bit by the fluid. 
The parameter r can be defined as dou-
ble distance between the cutting edges 
of the bit and depends on its type.  

The parameter β, which is in for-
mula (2) and determines the intensity of 
crushing, depends on the type of bit and 
allows to set the dependence of the 
crushing intensity on the mass of the 

soil particle. When the design of the bit is such that its entire working surface is in contact with the 
soil (Fig.1, a), we assume β = 0, which means the same crushing intensity for particles of all masses. 
With a more complex bit shape, when pieces of different sizes are simultaneously captured (Fig.1, b, 
c), the crushing intensity depends on the particle mass.  

The parameter γ depends on the characteristics of the soil and describes the mass distribu-
tion of breakaway faction. If particles are spherical, the surface area of a particle of mass y can 
be calculated using its density  by the formula s(y) = 4(3у/(4))2/3. The surface area of all 
particles formed during a single crushing of a particle of mass y is determined by the expression 

dxyxfxysxys
y

 
 

0

1 )()()( . 

The work A of the bit for soil crushing can be calculated as the power received by the bit 
from the  downhole motor or drill string in time T. At the same time, according to the law of 
crushing of Rittinger [6],  

A = kΔs,                                                                   (4) 

where A – work for crushing, J; Δs – particle surface area change, m2; k  – coefficient of proportion-
ality, N/m. Then the parameter γ can be calculated by substituting s =s(y) – s(y) in equation (4) 
and averaging of this equation over a period [0; T]. 

The parameter λ0 is associated with the rate of penetration, which is assumed to be constant. The 
estimate of the parameter λ0 can be found by solving equation (4). However, this requires multiple solu-
tions to equation (1) for different values of the parameter λ0, which is a laborious process from a compu-
tational point of view. On the other hand, it is easy to see that the solution of equation (1) for an arbi-
trary λ0 is obtained from the corresponding solution for the case of λ0 = 1 by simply scaling of time.  

Thus, to simulate the crushing of soil with bits, the following parameters should be set: soil density, 
proportion of solid rock (first type of soil) of the total crushed mass, penetration rate, borehole diameter, 
bit type (roller cone, blade, etc.) and the distance between the blades of the bit, the proportionality coef-
ficient of the law of crushing of Rittinger for the considered soil and the power at the bit.  

To illustrate the algorithm execution, a specific example was considered. We chose mixed soil 
with a density of 2650 kg/m3 (quartz aleurolite), a penetration rate of 0.01 m/s, a borehole diameter of 
0.4445 m, a proportionality coefficient of the Rittinger crushing law 0.28. The share of sandy soil was 
25 % and was supposed to be distributed according to the normal law in the range of 0.1-0.5 mm. 
We determined the hardness and abrasion categories for the considered type of rock (according to 
L.A. Schreiner and GOST 12288-66). When drilling such rocks, roller cones and PDC bits are used, 
so for specific calculations one PDC drill bit with six blades was chosen (with γ = 1.5, β = 2) and 
the second – a roller cone bit with three nozzles (γ = 1.1, β = 2). Figure 2 shows the percentage dis-
tribution of particle radii at specified intervals for two selected bits. 

 

Fig.1. Bit types: а – blade; b – roller cone; 
c – diamond (PDC –Polycrystalline Diamond Bits) 

а b c 
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Analysis of such histograms allows to select the most appropriate drilling parameters from a 
particular point of view and the corresponding tools. 

Multiphase flow of drilling fluid, considering its non-Newtonian properties. After passing 
through the pipes of the drill string, the fluid enters the annular space together with particles of the 
drilled rock. Further, under the action of the existing pressure, this mixture should rise to the collar 
and eventually be removed from the well for subsequent cleaning and regeneration. Note that at the 
same time, formation fluids and gas bubbles from the rock surrounding the well may appear in the 
well space. If necessary, the model can be modified to include these effects. 

The paper describes a mixture that consists of a continuous (drilling fluid) and a dispersed phase 
(drilling  cuttings). The particles of the dispersed phase can have the same size, determined by the for-
mula (3), or be of different sizes. In the latter case, a piecewise constant approximation is introduced 
using the formula (3) and each set of particles of the same size is considered as a separate phase.  

One of the possible ways to simulate a multiphase medium is to present it as a combination of 
several interpenetrating continuums (multi-fluid model).  

Basic equations. In the most general model, the Navier-Stokes equations, averaged in one way or 
another (by volume, time, or ensemble), are used to represent the flow of individual components. When 
using volume averaging [11], the system consists of the equations written for each phase of the flow, 

    0



kkkkkt
u ;                                                    (5) 
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Here index k is associated with a given phase; ρk – phase density; uk – velocity vector; pk – 
pressure; τk – viscous stress tensor; g – gravity factor; Mk – force acting on this phase from other 
phases. In both equations there is an important parameter αk, the interpretation of which depends on 
the applied averaging type. When using volume averaging, this value characterizes the phase frac-
tion in the individual volume of the multiphase medium (0 < αk ≤ 1). 

To calculate the flows in the well, the system of equations (5), (6) can be significantly simpli-
fied, given the fact that the longitudinal size of the well is much larger than the transverse one. This 
allows the use of a narrow channel approximation [2].  
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Fig.2. Histogram of the distribution of particle radii at specified intervals for two types of bits 
1 – PDC; 2 – roller cone 
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A further simplification was made by averaging by cross section [6], which made it possible to 
switch to a one-dimensional description. To reduce the number of solved differential equations, a mix-
ture model was applied [12]. The main idea is the concept of a mixture – a model environment, the 
movement of which describes the behavior of a multiphase system as a whole. Its equations are obtained 
by adding the equations of continuity and momentum balance for each phase. As a result, we get the 
system of equations (index m refers to the parameters of the mixture): 

• phase continuity equation 

    0





 Au

z
A

t kkkkk , k = 1...n,                                            (7) 

where A – well cross-sectional area; 
• mixture continuity equation 
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• momentum balance equation for a mixture 
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where the z coordinate is measured from the collar and is directed down the well depth. 

The mixture density ρm is calculated using the formula 



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, and um – velocity of the 
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, where n – total number of 

phases. It is also assumed that all phases of the mixture share the same pressure, which coincides with 
the pressure of the mixture pm. The forces of friction on the borehole wall Fw can be calculated using 
known hydraulic formulas for the flow of single-phase fluid with the parameters of the mixture.  

Algebraic slipping model for viscoplastic fluid. In the resulting system of equations (7)-(9), 
the number of unknowns is greater than the number of equations. To close the system in [12], the 
so-called algebraic slip model was constructed. In this paper, it is supplemented for the case of non-
Newtonian carrier phase.  

The strength of the interfacial interaction is determined by the formula [12] 
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We introduce the drag coefficient βk and write vkkk uM  , where uvk – slip velocity of phase k 
in relation to the carrier phase, uvk = uk – uv, uk – velocity of the dispersed phase, uv – velocity of the 
continuous (carrier) phase. For a Newtonian fluid, the resistance coefficient   kvkkkk tuf , where 

 ckkk dt  182  – particle relaxation time; dk – equivalent diameter of particles; f (uvk) – drag func-
tion, which was calculated by the Schiller – Nauman formula: 


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where ccRe  vkk ud . 
Often, the drilling fluid is a clayey substance that behaves not as Newtonian, but as a vis-

coplastic (Bingham) fluid. For this type of fluid the rheological law is as follows: 
y
u



 c0 , 

where 0  – ultimate shear stress; ηс – coefficient of structural viscosity [7]. In this case, structural 
viscosity is used to determine the Reynolds number. 
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Each particle of the dispersed phase in a Bingham fluid, in addition to the force of viscous resis-
tance, is additionally affected by the force FВ associated with plastic stresses on the surface of the par-
ticle. Following [3], dkAF ,0В  , where dkA ,  – surface area of a particle of the dispersed phase.  

Consider the individual volume V, assuming that it contains nk particles of disperse phase k. Let 
us set nk = Vk/Vk,d, where Vk – volume occupied by phase k in volume V and Vk, d – volume of one par-
ticle of phase k. The total force associated with plastic stresses acting on the dispersed phase in vol-
ume V, is equal to dkkdkk VVAnF ,,0В  . Dividing it by the volume, we get dkdkkBk VAM ,,0,  . 
For spherical particles with equivalent diameter dk we have kkBk dM 0, 6 . 

The total strength of the interfacial interaction BkNkk MMM ,,  , where NkM ,  – strength of vis-
cous resistance due to the presence of the structural viscosity of the Bingham fluid; BkM ,  – force 
arising due to plastic stress. As a result, we have 

k
kvkkk d

uM 06
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In view of (10), we obtain the equality 
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Hence considering the equation )( cc  kkm  we have the slip velocity valid for a two-
phase medium, 
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Note that uvk is not calculated directly from the equation (12), since βk depends on uvk through 
drag function (11). Consequently, (12) is an equation for uvk, which needs to be solved by some ap-
proximation method.  

The initial and boundary conditions should be added to the obtained equations. In particular, 
we propose to add the initial distribution of the volumetric content of each phase along the entire 
annular space of the well. 

To calculate the flow in the drill string and in the annular space, we set the volumetric flow 
rates and, consequently, the velocities of all phases at the entrance to the drill pipe or at the bottom. 
The volume of the drilling return at the bottom is determined from the ratio between rate values 

 ccutcut QQQ  , where cutQ  and Qс – flow-rates of drilling return and drilling fluid respectively. 
Verification of the model. The solution of the problem of drilling cuttings removal. To solve the 

resulting system of equations, a numerical method was constructed. The continuity equation for a sepa-
rate phase (7) was solved according to the scheme using upwind differences. For the joint solution of the 
equations of continuity and impulse balance for the mixture (8), (9), the iterative SIMPLE algorithm 
was used [13]. To determine the relative phase velocity, we solved the nonlinear equation (12). The cal-
culation was made to obtain a steady-state solution for the volume fraction of each phase. 

The execution of the constructed algorithm was verified in the particular case of a Newtonian 
fluid by the example of solving the test problem of deposition of drilling return particles after the 
termination of the circulation of drilling fluid. It was found that in the special case when the density 
of drilling cuttings phase and drilling fluid are close, the system of equations (7)-(9), (12) allows an 
analytical solution for the volumetric content of particles. In a computational experiment, it was 
shown that a numerical solution converges to an analytical one. 

Let us consider some results of calculations that reveal the properties of a drilling fluid as a vis-
coplastic one. The defining parameters were chosen from the examples given in [10]. We considered 
drilling return particles with density ρk = 2560 kg/m3, drilling fluid with density ρc = 1300 kg/m3 and 
structural viscosity ηс = 0.01 Pa·s (it is assumed that k > c). The flow rate of the fluid at the bottom is 
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0.06 m3/s, and the rate of removed drilling cut-
tings is 0.0016 m3/s and depends on the penetra-
tion rate 0.01 m/s. The volume fraction of drill-
ing cuttings at the bottom hole was 2.6 %. The 
well depth is 500 m and its diameter is 0.445 m.  

Figure 3 shows the dependence of the 
drilling cuttings removal time and the particle 
ascent velocity on the diameter for different 
values of the ultimate shear stress τ0. In this 
case, τ0 = 0 corresponds to the Newtonian 
fluid, and τ0 = 2 Pa and τ0 = 5 Pa to a vis-
coplastic one. Note that for a given range of 
particle diameters (from 0 to 10 mm), the 
Reynolds number did not exceed 400, which 
corresponds to the case of laminar flow. 

Particles in a non-Newtonian medium are 
removed faster than in a Newtonian medium and 
the velocity is higher with larger the values of τ0. 

At the same time, in a certain range of diameters for a non-Newtonian fluid, the particle removal time 
remains constant, independent of either the diameter or τ0. This is the ultimate removal time, which is 
limited by the velocity of the carrier phase. The particle velocity graphs here have horizontal sections (in 
the range of diameters from 0 to 1 mm for τ0 = 2 Pa and from 0 to 2.5 mm for τ0 = 5 Pa). For these sec-
tions, the phase slip velocity is uvk = 0, i.e. drilling fluid and drilling return particle rates are the same. 
This is due to the additional impact on the particles of plastic stress from the fluid. Such flow regime of 
an inhomogeneous medium is called an equilibrium [1]. It is the most profitable, since at a given veloc-
ity of the carrier phase it allows to remove drilling return in the shortest possible time. 

If particles ascend but are left behind the carrier phase the inequality uvk > 0 should be satisfied. 
For a steady flow through a pipe of constant cross section, the derivatives in (12) are zero and then from 
(12) it follows that the inequality uvk > 0 holds for particles with a diameter  kk dd : 

g
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k
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The parameter 
kd  defines the boundary of equilibrium mode. From (13) it follows that 0

kd  
when 00  , i.e. for Newtonian fluid equilibrium mode in the above sense is impossible. 

Obviously, too large particles at a given flow rate uv cannot be carried to the surface. The min-
imum diameter of such particles is determined by the zero rate of removal. This flow rate is called 
levitation speed uw [10]. Assuming uk = 0, we have uw = – uv, since uv < 0, then uw > 0. For the 
steady-state flow from (12) and taking into account (13), we obtain 
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





  1
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0
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w d

d
duf

du .                                                  (14) 

Thus, one can find the limiting diameter of the particles carried out 
kd  for given flow parame-

ters   kk dd , moreover, since uw > 0. Geometrically, the value 
kd  corresponds to the intersection 

point of the particle velocity graph with the abscissa axis. When  kk dd  the particle removal time 
goes to infinity, approaching the vertical asymptotes. 

When  kk dd  the levitation is impossible. Indeed, since during levitation uk = 0, and in this ar-
ea uk = uv, then the flow rate is uv = 0. We obtain an equilibrium mode in the state of static equilib-
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rium. In this case, the particles of the drilling return appear to be «frozen» in the drilling fluid. This 
means that when the circulation of the fluid stops (for example, for some technical reasons), drilling 
return particles will not settle, contaminating the well. Note that special cases of formulas (13), (14) 
(for αс = 1, f = 1) were previously obtained in [10]. 

 
 

Conclusions 
 

1. We implemented a mathematical model of rock crushing during drilling based on frag-
mentation theory and determined the relationship between the parameters of the model and the 
drilling process. We considered such factors as the properties of the drilled rock, the rate of 
penetration, the type of bit, and the supplied power. The constructed model allows us to obtain 
the distribution of particle sizes formed during drilling at specified intervals and calculate the 
average value in each interval. This is important for solving the problem of drilling cuttings re-
moval, as well as the design of systems for cleaning and regeneration of drilling fluid. 

2. Based on the averaged hydrodynamic equations, a mixture model of drilling fluid circulation 
as a viscoplastic fluid, moving together with particles of the cutting material, was constructed. A 
closing relation for the interfacial interaction force was derived considering the viscous-plastic 
properties of the drilling fluid. An algorithm for the numerical solution of the resulting system of 
equations was proposed. The problem of the removal of drilling cuttings from the well was investi-
gated. The existence of an equilibrium flow mode was shown, which is the most beneficial to use 
for the removal of drilling cuttings .  
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