

Геология

УДК 550.37

ОСОБЕННОСТИ СИГНАЛА АМТ В МЕРТВОМ ЧАСТОТНОМ ДИАПАЗОНЕ НА ЧУКОТКЕ (ДАЛЬНИЙ ВОСТОК РОССИИ)

Е.Ю.ЕРМОЛИН¹, О.ИНГЕРОВ², А.А.ЯНКИЛЕВИЧ³, Н.Н.ПОКРОВСКАЯ³

1 ООО ДЖИ М Сервис, Санкт-Петербург, Россия

² Торонто, Онтарио, Канада

³ Санкт-Петербургский горный университет, Санкт-Петербург, Россия

В статье выполнен анализ амплитуды спектров данных аудиомагнитотеллурического зондирования (AMT3). Особое внимание акцентировано на частотном диапазоне от 1 до 5 кГц, который принято называть мертвым частотным диапазоном или *«dead band»*. Анализировались данные базовых станций, используемых при выполнении полевых работ в летне-осенний период 2013, 2014 и 2017 годов. Район работ расположен в Чукотском автономном округе за Северным полярным кругом. Предыдущими исследователями отмечалось, что надежный сигнал в мертвом частотном диапазоне можно получить лишь в ночное время. Авторами статьи было установлено, что на Чукотке в дневное время на фоне минимума сигнала в пределах *«dead band»* существует локальный максимум на частоте 2,4 кГц. При регистрации поля более 3 ч в дневное время в большинстве случаев удается восстановить частоты 2,2 и 2,6 кГц. Данные частоты являются надежными реперами, позволяющими в некоторых случаях восстановить кривую АМТЗ с использованием взаимосвязи между амплитудой и фазой. Предложены способы улучшения качества данных в мертвом частотном диапазоне при измерениях в дневное время.

Ключевые слова: аудиомагнитотеллурический метод (АМТ); магнитовариационный метод (МВП); ЭМ мониторинг; мертвый частотный диапазон; золотоносные эпитермальные кварцевые жилы

Как цитировать эту статью: Особенности сигнала АМТ в мертвом частотном диапазоне на Чукотке (Дальний Восток России) / Е.Ю.Ермолин, О.Ингеров, А.А.Янкилевич, Н.Н.Покровская // Записки Горного института. 2019. Т. 235. С. 125-132. DOI: 10.31897/PMI.2019.2.125

Введение. Магнитотеллурический (МТ) [8] и магнитовариационный (МВП) [6, 14-18] методы реализуются при помощи измерения пяти компонент естественного переменного электромагнитного поля Земли. Эта технология является надежным инструментом для решения целого ряда геологических задач. При изучении глубин до 2 км применяется высокочастотная модификация магнитотеллурического метода – аудиомагнитотеллурическое зондирование (АМТЗ), в которой исследования выполняются на частотах от 1 Гц до 50 000 Гц в зависимости от характеристик используемых магнитных датчиков. Считается, что источником поля в методе АМТ являются грозы в экваториальной части Земли. При этом существует минимум амплитуды сигнала в диапазоне частот от 1 до 5 кГц, который именуется мертвым частотным диапазоном или *«dead band»*. При решении ряда малоглубинных задач информация на кривой АМТ в диапазоне от 1 до 5 кГц весьма важна. Наиболее полно проблема мертвого частотного диапазона представлена в работе Xavier Garcia and Alan G.Jones [12]. Для повышения качества данных в *«dead band»* предыдущие исследователи предлагают: проводить измерения в ночное время; повышать чувствительность магнитных датчиков; использовать при обработке более одной базовой станции.

На практике не всегда удается реализовать все указанные рекомендации. Появился еще один подход: использование на стадии первичной обработки дисперсионных соотношений в тензоре импеданса (взаимосвязей между амплитудой фазой кривых кажущегося сопротивления AMT) [13].

Авторы выполняли АМТ работы для поисков эпитермального золота на Чукотке. Геологическая задача требовала получения данных АМТ очень высокого качества, поскольку поисковые объекты (золотоносные кварцевые жилы) имеют малые размеры (мощность от 1 до 5 м). Жилы перекрыты толщей вулканических пород мощностью 80-300 м. Методика интерпретации данных АМТ 2013 г. подробно описана в раннем исследовании авторов [9]. Более детально геологическое строение района, результаты комплексной интерпретации данных АМТ приведены в работе [10]. В данной статье авторы акцентируют внимание только на особенностях обработки данных АМТ.

Для выявления особенностей сигнала авторы проанализировали данные, полученные в летне-осенние периоды 2013, 2014 и 2017 годов. Регистрация данных осуществлялась по методике с постоянным базовым пунктом [11]. Район находится за Северным полярным кругом, где сигнал в

«dead band» еще более слабый. Единственным способом получения качественных данных в высокочастотном диапазоне являлись ночные измерения. Это снижало производительность полевых работ. Для повышения суточной производительности измерения производились и днем. В июле и августе получить кривую приемлемого качества в дневное время удавалось с вероятностью 50-70 %, в сентябре с вероятностью 40-60 %, в октябре – 10 %.

Целью данного исследования является поиск особенностей амплитудных спектров 5-компонентных измерений (Ex, Ey, Hx, Hy, Hz). Возможно, что некоторые особенности помогут найти новые способы повышения качества АМТ и МВП данных в мертвом диапазоне.

Методика исследования. В распоряжении авторов были записи базовых станций в периоды полевых работ на Чукотке: август-октябрь 2013 г.; июль-сентябрь 2014 г.; июль-август 2017 г. Пять компонент естественного электромагнитного поля Земли ежедневно регистрировалось в течении 20 ч с 12 до 8 ч по местному времени. Осредненные координаты участка: 170 град. восточной долготы, 70 град. северной широты. При выполнении полевых работ использовались универсальные регистраторы MTU-5A, свинцовые неполяризующиеся электроды и магнитные датчики AMTC-30 компании Phoenix Geophysics. Магнитные датчики устанавливались в специальные треноги компании AGCOS. Все кабели и тренога с магнитными датчиками на базовой станции закапывались. Особенностью регистраторов МТU-5А является то, что на высокой частоте дискретизации записывается лишь часть временного ряда. Каждые 10 с на наиболее высокой частоте дискретизации (24000 Гц) производилось по четыре записи продолжительностью 0,1 с. Каждая запись состояла из 2400 отсчетов. Результаты наблюдений (временные ряды) при анализе разбивались на 30-минутные отрезки. Обработка выполнялась в программе SSMT2000, которая входит в стандартный пакет первичной обработки, поставляемой компанией Phoenix-Geophysic вместе с аппаратурой. Использовались локальные оценки компонент импеданса с использованием автоспектров электрического поля [11] («адмитансные» оценки, Local E). В статье мы показываем данные только 2017 г., потому что главные выводы об особенностях сигнала АМТ по всем трем сезонам принципиально не отличаются.

Анализ результатов. В ходе исследований авторы визуализировали результаты обработки большого массива полевых данных АМТ, полученных на одной и той же точке. Анализ выполнен для амплитуды спектров, как функции от времени; кривых амплитуды как функции от частоты (для более детального анализа); амплитуды сигнала для частот 1,5 и 3 кГц; кривых кажущегося сопротивления АМТ.

1. Амплитуды спектров во времени для пяти компонент представлены на рис.1. В мертвом частотном диапазоне наблюдается четкая периодичность амплитуды сигнала, связанная со временем суток. Эта сине-фиолетовая полоса низких значений амплитуды на всех компонентах в диапазоне частот от 0,9 до 6 кГц сужается и расширяется во времени. Наиболее широкой (наименьшая амплитуда) она становится в районе 12-15 ч (днем), а наиболее узкой (максимальная амплитуда) наблюдается с 0 до 3 ч (ночью). На фоне общей закономерности выделяется 11 августа 2017 г., когда в течение всего дня наблюдается аномальное повышение значений амплитуды сигналов во всем частотном диапазоне.

На рис.2 представлены амплитуды спектров в мертвом частотном диапазоне за период с 8 по 13 августа, на всех компонентах наблюдается общий минимум сигнала в дневное время. На фоне общего понижения поля виден локальный максимум на частоте 2,4 кГц, который наиболее наглядно наблюдается на вертикальной магнитной компоненте (Hz). Здесь же ярко проявляются два локальных минимума «*dead band*»: 1,5 и 3 кГц. Чтобы более детально проанализировать характер амплитуды спектра в дневное и ночное время, авторы визуализировали кривые амплитуды сигнала как функции от частоты (амплитудные спектры).

2. Амплитудные спектры для 4-часовой дневной записи 8 августа с 12:30 до 16:30 ч и короткой 30-минутной записи 9 августа с 2:00 до 2:30 ч показаны на рис.3, где отчетливо видно, что амплитуда спектров в ночное время выше, чем в дневное время. На дневных спектрах в мертвом частотном диапазоне виден локальный максимум на частотах 2,2 и 2,6 кГц, обозначенный синим полупрозрачным квадратом.

Поскольку амплитудные спектры локального максимума в «dead band» выше на 85 % относительно значений двух ближайших локальных минимумов, то существует большая вероятность того, что кривая АМТЗ может быть восстановлена на локальном максимуме с использованием

DOI: 10.31897/PMI.2019.2.125

9

10

Август 2017 г.

Рис.2. Амплитуды спектров с 8 по 13 августа 2017 г.

11

12

Hx

Hy

Hz

0,1

10

1

0,1 10

1

0,1

127

2E-5

9E-6

7E-6

5E-6

3E-6

1E-6

13

Амплитуда спектра, нТл/√Гц

Рис.3. Сравнение амплитудных спектров, измеренных ночью и днем. Собственные шумы датчиков показаны в виде линий (данные официальных сайтов производителей). Значения локального максимума и двух локальных минимумов амплитуды компонент Нх и Ех в дневное время показаны в таблице

дневной записи. Наличие локального максимума в мертвом частном диапазоне может быть индикатором качества данных в дневное время. Для дневных измерений целесообразно проводить оперативный анализ амплитудных спектров и других функций импеданса сразу после записи в полевых условиях. Подобная процедура реализована в российской аппаратуре для АМТЗ [5].

Следует отметить, что в «dead band» амплитуда магнитных компонент ниже, чем электрических компонент (относительно частоты 100 Гц). Следовательно, шумы в магнитных каналах будут больше, чем в электрических. В связи с этим, для диапазона «dead band» в исследуемом районе авторы использовали результаты обработки импеданса по методике с удаленной базой, с референсными электрическими каналами (*Remote E*) [11]. Собственный уровень шумов наиболее распространенных магнитных датчиков значительно ниже, чем амплитуда природного сигнала в «dead band» (рис.3). Таким образом, проблема «dead band» связана не с чувствительностью датчиков, а в большей степени зависит от внешних помех. Следовательно, актуально усовершенствование технологии установки магнитных датчиков для уменьшения уровня внешних шумов. В результате повышенного уровня шумов магнитных каналов значения кажущихся сопротивлений существенно занижаются. Это мы и наблюдаем в «dead band». Вероятно поэтому указанный частотный диапазон некоторые исследователи и обработчики данных МТЗ называют «теллурической ямой» – значения сопротивлений как будто «проваливаются в яму» на кривой кажущегося сопротивления.

Е.Ю.Ермолин, О.Ингеров, А.А.Янкилевич, Н.Н.Покровская Особенности сигнала АМТ в мертвом частотном диапазоне...

Рис.4. Зависимости амплитуды сигнала на частотах 3 и 1,5 кГц от местного времени суток в период с 4 июля по 26 августа 2017 г. Белой окружностью показаны примеры локальных максимумов

3. Амплитуды сигналов на частотах 1,5 и 3 кГц имеют минимальные значения в «dead band». Авторы выполнили детальный анализ этих частот. Результаты представлены на рис.4.

Для частоты 3 кГц на всех компонентах сигнал выше в ночное время с 0 до 4 ч. С 15 июля по 15 августа наблюдаются повышенные значения с 13 до 17 ч по местному времени. Для частоты 1,5 кГц уровень сигнала выше в дневное время суток. Ночью с 22 до 5 ч значения минимальны. Таким образом, частота 1,5 кГц наиболее проблемная в «dead band» для исследуемой территории.

Единичные локальные аномалии повышенных значений амплитуды (белые кружки на рис.4) хаотично присутствуют в течение всего дня. Авторы использовали аппаратуру MTU-5A, где на частоте дискретизации 24 кГц на практике записывается лишь от 2 до 5 % от времени регистрации. Вероятно, запись непрерывного временного ряда и повышение частоты дискретизации помогут зафиксировать более редкие «импульсы» сигнала. Возможно, это поможет частично решить проблему с качеством кривых AMT3 в «dead band».

4. Кривые кажущегося сопротивления и фазы импеданса для короткой дневной записи, 4-часовой дневной записи и 15-часовой записи, полученные на одной и той же точке, показаны на рис.5. Для всех кривых выполнена редакция по частотам.

Кривую, рассчитанную по 30-минутной дневной записи (рис.5, *a*) можно назвать браком, так как значения амплитуды и фазы на 11 частотах подряд в *«dead band»* на амплитуде и фазе значительно отклонились от реальной кривой. Кривая, рассчитанная по 4-часовой дневной записи (рис.5, δ), значительно лучшего качества. Главной особенностью этой кривой является то, что частоты локального максимума (2,2 и 2,6 кГц) удается восстановить после интерактивной отбраковки решений с малым весом. В результате наличия этих реперов можно восстановить кривую в *«dead band»*. Как правило, на практике удаляются значения, которые значительно отклоняются

Рис.5. Кривые кажущегося сопротивления и фазы импеданса: для дневной 30-минутной (*a*) и 4-часовой (*б*) записи (8 августа); ночной 15-часовой записи 8-9 августа (*в*)

от среднего уровня кривой (1-2 частоты выше и 2-3 частоты ниже локального максимума). Удаленные частоты обозначены белыми прозрачными прямоугольниками на рис.5, б. После этого используются дисперсионные соотношения между амплитудой и фазой магнитотеллурического импеданса (дисперсионные соотношения первого рода). Данная процедура называется амплитудно-фазовой коррекцией [7]. Некоторые авторы реализуют эту процедуру на стадии первичной обработки данных [13]. Основная идея амплитудно-фазовой коррекции заключается в том, что одинаковые частотные диапазоны амплитуды и фазы несут информацию о разных глубинах (фаза отвечает за более глубинную часть разреза). Кроме этого, фазовые кривые менее подвержены влиянию помех [2, 3]. К сожалению, амплитудно-фазовая коррекция кривых кажущегося сопротивления МТЗ в настоящий момент - это единственный способ использования дневных записей в северных широтах. Следует помнить, что указанная процедура корректна только для районов, где не наблюдается явных нарушений дисперсионных соотношений в тензоре импеданса. Нарушение соотношений между амплитудой и фазой встречаются как в теории, так и на практике [1, 4].

Кривая, рассчитанная по записи с 16:30 до 7:30 ч (15 ч записи) имеет хорошее качество (рис.5, в). Удалив частоту 1,5 кГц, можно использовать эту кривую для анализа и интерпретации.

Решение поисковой задачи. После обработки данных и применения процедуры амплитудно-фазовой коррекции выполняется анализ параметров магнинитотеллурического импеданса, определяется способ решения обратной задачи. Результатом интерпретации являются геоэлектрические модели. В качестве демонстрации эффективности предло-

женной методики обработки дневных записей приведем пример обнаружения продолжения известной золотоносной эпитермальной кварцевой жилы. Методика анализа и интерпретации данных АМТ представлена детально в ранних работах авторов [9, 10].

На рис.6 приведены геоэлектрические разрезы (результаты решения обратной 2D задачи), построенные в 2013 г. на одном из участков по данным АМТ. Изначально (до планирования работ АМТ) на участке было известно положение эпитермальной золотоносной кварцевой жилы мощностью 3 м (1 на рис.6). Жила перекрыта потоками лав базальтов и их туфов. Мощность пе-

Рис.6. 3D визуализация геоэлектрических разрезов (результатов решения обратной 2D задачи AMT) 1 – положение эпитермальной золотоносной кварцевой жилы, известной до применения работ AMT;

2 - положение северной части золотоносной кварцевой жилы, выявленной по результатам бурения через полгода после прогноза АМТ

реслаивающихся перекрывающих пород составляет от 80 м (на юге участка) до 300 м (на севере участка). В результате сопоставления геоэлектрических разрезов вдоль профилей 1 и 2 с данными бурения было определено, что положение известной жилы соответствует области повышенных значений удельного сопротивления. Зона имеет глубинный узкий канал. Видно, что на юге зона изолятора значительно расширяется, а на севере опускается и смещается в восточном направлении. Спустя полгода северное продолжение зоны повышенного сопротивления было разбурено и новая жила была обнаружена.

Следует отметить, что если бы авторы не использовали ежедневно две дневные (3-часовые) записи АМТ, а лишь одну ночную запись, то производительность работ уменьшилась бы в три раза. Учитывая то, что на выполнение полевых работ был отведен короткий срок и ограниченное количество станций МТU-5A, то решить задачу, используя лишь одну ночную запись в сутки с использованием одной станции было бы невозможно.

Выводы. Выполнен анализ амплитуды спектров АМТ в мертвом частотном диапазоне, полученных во время полевых работ на Чукотке в летне-осенние периоды 2013, 2014 и 2017 годов. Для регистрации качественных данных АМТ за полярным кругом в *«dead band»* необходимо выполнять измерения ночью (как и рекомендовали предыдущие исследователи). Авторы описали локальный максимум в *«dead band»* в дневное время (частоты 2,2 и 2,6 кГц), граничащий с двумя локальными минимумами (частоты 1,5 и 3 кГц). Наиболее проблемной является частота 1,5 кГц.

Дневные измерения можно использовать в том случае, когда удается восстановить кривую в локальном максимуме (2,6-2,2 кГц). Как правило, для аппаратуры MTU-5A (Phoenix Geophysics) измерения днем следует выполнять продолжительностью не менее 3 ч. При этом необходимо, чтобы по обе стороны от локального максимума бракованными были не более 2-3 частот.

Для улучшения качества данных в «dead band» следует применять аппаратуру с постоянной записью временного ряда на высокой частоте дискретизации. Необходимо усовершенствовать способы установки магнитных датчиков и электродов. Для регистрирующей аппаратуры актуальна реализация оперативной визуализации амплитуды спектров сигналов и других функций магнитотеллурического импеданса непосредственно после измерения на точке в полевых условиях.

Использование дневных записей длительностью более 3 ч позволяет в исследуемом районе получать данные АМТ, пригодные (после применения процедуры амплитудно-фазовой коррекции) для дальнейшего анализа и интерпретации. Эффективность применения предложенной методики обработки данных АМТ показана на примере прогноза северного продолжения известной эпитермальной золотоносной кварцевой жилы. Прогноз был подтвержден бурением через полгода после выполнения работ АМТ.

ЛИТЕРАТУРА

1. Алексеев Д.А. Дисперсионные магнитотеллурические соотношения в двумерной модели берегового эффекта / Д.А.Алексеев, Н.А.Пальшин, И.М.Варенцов // Физика Земли. 2009. № 2. С. 84-87.

2. Безрук И.А. Оценка достоверности определения импедансов при обработке магнитотеллурических вариаций. / И.А.Безрук, В.О.Лахтионов // Прикладная геофизика. 1977. Вып. 89. С. 80-87.

3. Белявский В.В. Технология рудного аудимагнитотеллурического зондирования. / В.В.Белявский, В.В.Сухий // Разведка и охрана недр. 2003. № 2. С. 38-47.

Ваньян, Л.Л. Искажения донных МТЗ в прибрежной зоне / Л.Л.Ваньян, Н.А.Пальшин // Физика Земли. 1990. № 8. С. 62-78.
Мультипараметрический мониторинг электромагнитных предвестников землетрясений в диапазоне частот 0,1 Гц-1

МГц / А.К.Сараев, К.М.Антащук, А.Е.Симаков, К.Б.Бакиров // Сейсмические приборы. 2013. Т. 49. № 2. С. 5-26.

6. *Рокитянский И.И.* Исследование аномалий электропроводности методом магнитовариационного профилирования // Киев: Наукова думка. 1975, 276 с.

7. *Фельдман И.С.* Амплитудно-фазовая коррекция кривых магнитотеллурического имеданса / И.С.Фельдман, Е.Ю.Ермолин //Записки Горного института. 2011. Т. 194. С. 200-210.

8. Berdichevsky M.N. Models and methods of magnetotellurics / M.N.Berdichevsky, V.I.Dmitriev // Berlin, Heidelberg: Springer-Verlag, 2008. 563 p.

9. Ermolin E. Gold exploration in Chukotka region by using audiomagnetotellurics / E.Ermolin, O.Ingerov, A.A.Savichev // 22-nd EM Induction Workshop. Weimar, Germany, 2014. P. 1-4.

10. Ermolin E. Integration of the AMT in LS-epithermal Au-Ag veins exploration in Chukotka region / O.Ingerov, A.Savichev // Engineering and Mining Geophysics 14th Conference and Exhibition. 2018. P. 1-9.

11. Gamble T.D. Magnetotellurics with a remote magnetic reference / T.D.Gamble, W.M.Goubau // Geophysics. 1979. Vol. 44. № 1. P. 53-68.

12. Garcia X. Atmospheric sources for audio-magnetotelluric (AMT) sounding / X.Garcia, A.Jones // Geophysics. 2002. Vol. 67. № 2. P. 448-458.

13. Jones A. Magnetotellurics: Status Quo and Quo Vadimus // DMEC Exploration 2017. № 11. P. 139-158.

14. Parkinson W.D. Direction of rapid electromagnetic fluctuation // Geophysics. 1959. J. 2. P. 1-14.

15. Rokityansky I.I. Geoelectromagnetive Investigation of the Earth Crust and Mantle. Berlin, Heidelberg: Spinger-Verlag, 1982. 378 p.

16. Schmucker U. Anomalies of geomagnetic variations in the southwestern United States // Scripps Institution of Oceanography. University of California Press, 1970. Bul. 13. P. 1-165.

17. Vozoff K. The magnetotelluric method // Electromagnetic methods in applied geophysics. Vol. 2. Applications. Series: Investigations in geophysics. 1991. N_{2} 3. P. 641-711.

18. Wiese H. Geomagnetic Tiefentellurik / Deutche Akad. Wiss. Berlin, 1965.

Авторы: Е.Ю.Ермолин, канд. геол.-минерал. наук, генеральный директор, E.Ermolin.GMS@gmail.com (ООО ДЖИ М Сервис, Санкт-Петербург, Россия), О.Ингеров, канд. геол.-минерал. наук, olexandr_ingerov@yahoo.ca (Торонто, Онтарио, Канада), А.А.Янкилевич, канд. техн. наук, ведущий инженер, yankilevich@mail.ru (Санкт-Петербургский горный университет, Санкт-Петербург, Россия), Н.Н.Покровская, инженер (Санкт-Петербургский горный университет, Санкт-Петербург, Россия).

Статья поступила в редакцию 8.07.2018.

Статья принята к публикации 18.01.2019.